Math 656 • Midterm Exam•March 8, 2016 • Victor Matveev

1) (15pts) Find all values of z in polar or Cartesian form, and plot them as points in the complex plane:
(a) $z=(1-i \sqrt{3})^{3 / 4}=\left(2 e^{-i \frac{\pi}{3}+i 2 \pi n}\right)^{3 / 4}=\sqrt[4]{8} e^{-i \frac{\pi}{4}+i \frac{3 \pi n}{2}}= \begin{cases}n=0: & \sqrt[4]{8} e^{-i \frac{\pi}{4}} \\ n=1: & \sqrt[4]{8} e^{-i \frac{\pi}{4}+i \frac{3 \pi}{2}}=\sqrt[4]{8} e^{i \frac{5 \pi}{4}}=\sqrt[4]{8} e^{-i \frac{3 \pi}{4}} \\ n=2: \sqrt[4]{8} e^{-i \frac{\pi}{4}+i \frac{6 \pi}{2}}=\sqrt[4]{8} e^{i \frac{11 \pi}{4}}=\sqrt[4]{8} e^{i \frac{3 \pi}{4}} \\ n=-1: \sqrt[4]{8} e^{-i \frac{\pi}{4}-i \frac{3 \pi}{2}}=\sqrt[4]{8} e^{-i \frac{7 \pi}{4}}=\sqrt[4]{8} e^{+i \frac{\pi}{4}}\end{cases}$

(b) $\left.\cos z=-2 \Rightarrow \frac{e^{i z}+e^{-i z}}{2}=-2 \Rightarrow e^{i z}+e^{-i z}+4=0 \right\rvert\, \times e^{i z} \Rightarrow \underbrace{e^{i 2 z}}_{s^{2}}+4 \underbrace{e^{i z}}_{s}+1=0$

$$
\Rightarrow s^{2}+4 s+1=0 \Rightarrow s_{1,2}=\frac{-4+(16-4)^{1 / 2}}{2}=-2 \pm \sqrt{3} \Rightarrow z=-i \log (-2 \pm \sqrt{3})
$$

Note that $-2 \pm \sqrt{3}<0 \quad$ so $-2 \pm \sqrt{3}=-(2 \pm \sqrt{3})=e^{i \pi}(2 \pm \sqrt{3})$

$$
z=\left\{\begin{array}{l}
-i \log \left((2+\sqrt{3}) e^{i \pi}\right)=-i(\ln (2+\sqrt{3})+i(\pi+2 \pi n)) \\
-i \log \left((2-\sqrt{3}) e^{i \pi}\right)=-i(\ln (2-\sqrt{3})+i(\pi+2 \pi n))
\end{array}\right\} \Rightarrow z=\cos ^{-1} 2= \pm i \ln (2+\sqrt{3})+\pi(1+2 n) n \in \mathbb{Z}
$$

In the last step we used the fact that $\ln (2-\sqrt{3})=-\ln (2+\sqrt{3})$ because $(2-\sqrt{3})(2+\sqrt{3})=1$
2) (15pts) Sketch the image of the region $\{z \in \mathbb{C}: 1 \leq|z| \leq e, \operatorname{Im} z \geq 0\}$ under the mapping $w=i \log (i z)$. You may consider this transform as a sequence of 3 separate, simple steps. Hint: use polar form for the original variable z, and note the slight complication from the fact that $\log (z)$ is the branch with $\arg z \in(-\pi, \pi]$

Step 1:

$$
\mathrm{z} \rightarrow \tilde{z}=i z: \text { rotation by } \frac{\pi}{2}
$$

"Half-ring" in the upper half-plane \Rightarrow "Half-ring" in the right half-plane

$$
\{1 \leq|z| \leq e, 0 \leq \arg z \leq \pi\} \Rightarrow\left\{1 \leq|\tilde{z}| \leq e, \arg \tilde{z} \in\left[\frac{\pi}{2}, \pi\right] \cup\left[-\pi,-\frac{\pi}{2}\right]\right\} \text { Note the branch cut! }
$$

Step 2:

$$
\tilde{z} \rightarrow \zeta=\log (\tilde{z}):
$$

"Half-ring" in the right half-plane \Rightarrow Two rectangles (would be 1 rectangle if not for the branch cut!)

$$
\left\{1 \leq|\tilde{z}| \leq e, \arg \tilde{z} \in\left[\frac{\pi}{2}, \pi\right] \cup\left[-\pi,-\frac{\pi}{2}\right]\right\} \Rightarrow\left\{0 \leq \operatorname{Re} \zeta \leq 1, \operatorname{Im} \zeta \in\left[-\pi,-\frac{\pi}{2}\right] \cup\left[\frac{\pi}{2}, \pi\right]\right\}
$$

Step 3: $\zeta \rightarrow w=i \zeta:$ rotate two rectangles by $\frac{\pi}{2}$:

$$
\left\{0 \leq \operatorname{Re} \zeta \leq 1, \operatorname{Im} \zeta \in\left[-\pi,-\frac{\pi}{2}\right] \cup\left[\frac{\pi}{2}, \pi\right]\right\} \Rightarrow\left\{\operatorname{Re} w \in\left[-\pi,-\frac{\pi}{2}\right] \cup\left[\frac{\pi}{2}, \pi\right], 0 \leq \operatorname{Im} w \leq 1\right\}
$$

3) (25pts) Calculate each integral over the indicated circle, or explain why the integral equals zero:
a) $\oint_{|z|=3} \frac{d z}{\left(e^{z}+1\right)^{9}}=0 \quad$ by C.G.T. since the nearest singularity is at $z=i \pi$, outside the contour
b) $\oint_{|z|=5} \frac{e^{z} d z}{\left(e^{z}+1\right)^{9}}=0$ by F.T.C. since the anti-derivative $\mathrm{F}(z)=-\frac{1}{8\left(e^{z}+1\right)^{8}}$ exists on entire contour
c) $\oint_{|z|=2} \frac{\sin \left(z^{2}\right) d z}{z^{2}-2 i z-1}=\oint_{|z|=2} \frac{\sin \left(z^{2}\right) d z}{(z-i)^{2}}=\left.2 \pi i \frac{d}{d z} \sin \left(z^{2}\right)\right|_{z=i}=2 \pi i(2 i) \cos (-1)=-4 \pi \cos 1$
d) $\oint_{|z|=R} \frac{d z}{\sqrt{z}}=\underbrace{\left.2 \sqrt{z}\right|_{R e^{-i \pi}} ^{R i \pi}}_{\substack{\text { Jump across } \\ \text { branch cut }}}=2 \sqrt{R}\left[e^{i \frac{\pi}{2}}-e^{-i \frac{\pi}{2}}\right]=4 i \sqrt{R}$ Equivalently, can obtain this by parametrizing $z=R e^{i \theta}$
e) $\int_{|z|=R} \bar{z} d z=\int_{0}^{2 \pi} R e^{-i \theta}\left(i R e^{i \theta} d \theta\right)=i R^{2} \int_{0}^{2 \pi} d \theta=i 2 \pi R^{2}$
4) (15pts) Find the bound on $\left|\int_{C} \frac{\cosh z}{z^{2}+2 i z-1} d z\right|$, where the integration contour C is a straight line connecting points $z=3 i$ and $z=3$. Hint: express cosh z in terms of exponentials.

$$
\left|\int_{C} \frac{\cosh z}{z^{2}+2 i z-1} d z\right|=\left|\int_{C} \frac{\left(e^{z}-e^{-z}\right) / 2}{(z+i)^{2}} d z\right| \leq \int_{C} \frac{\left(\left|e^{z}\right|+\left|e^{-z}\right|\right) / 2}{|z+i|^{2}}|d z| \leq \frac{\max \left(\frac{e^{x}+e^{-x}}{2}\right)}{\min |z+i|^{2}} \underbrace{3 \sqrt{2}}_{L}
$$

Here $\min _{\text {Line }}|z+i|^{2}$ is the shortest squared distance from $-i$ to the line from $3 i$ to 3
Shortest distance is shown in the Figure: $\min _{\text {Line }}|z+i|^{2}=2^{2}+2^{2}=8 \Rightarrow\left|\int_{C} \frac{\cosh z}{z^{2}+2 i z-1} d z\right| \leq \frac{3 \sqrt{2} \cosh 3}{8}$

5) (15pts) Consider any branch of function $f(z)=\left(\frac{z}{z-1}\right)^{1 / 2}$, describe its branch cut(s) and describe the jump discontinuity of this function across the branch cut(s). Finally, use this branch to compute $f(i)$
$f(z)=\left(\frac{z}{z-1}\right)^{1 / 2} \Rightarrow \frac{z^{1 / 2}}{(z-1)^{1 / 2}}=\frac{\sqrt{r_{1}} e^{i \theta_{1} / 2}}{\sqrt{r_{2}} e^{i \theta_{2} / 2}}=\sqrt{\frac{r_{1}}{r_{2}}} e^{i \frac{\theta_{1}-\theta_{2}}{2}}$
Let's choose the branch defined by $\left\{\begin{array}{l}z \quad \equiv r_{1} \exp \left(i \theta_{1}\right) \\ z-1 \equiv r_{2} \exp \left(i \theta_{2}\right)\end{array} \quad-\pi \leq \theta_{1,2,3}<\pi\right.$
Compute $f(i)$ for this prescription: $\left\{\begin{array}{l}r_{1}=1, \quad \theta_{1}=\pi / 2 \\ r_{2}=\sqrt{2}, \quad \theta_{2}=3 \pi / 4\end{array} \Rightarrow f(i)=\sqrt{\frac{1}{\sqrt{2}}} e^{i \frac{\pi \pi}{2}-\frac{3 \pi}{4}}=\sqrt{\frac{e^{-i \pi / 8}}{\sqrt[4]{2}}}=\frac{\sqrt{\sqrt{2}+1}}{2}-i \frac{\sqrt{\sqrt{2}}-1}{2}\right.$

This branch of $f(z)$ has a cut on the real axis $x \in(0,1)$:

- $x \in(-\infty, 0): \theta_{1,2}$ both jump by $2 \pi \Rightarrow \theta_{1}-\theta_{2}$ is continuous \Rightarrow no cut
$\left\{\bullet x \in(0,1): \theta_{2}\right.$ jumps by $2 \pi \Rightarrow f(z)$ acquires jump factor $\left.\sqrt{\frac{r_{1}}{r_{2}}} \exp \left(-i \frac{2 \pi}{2}\right)=-\sqrt{\frac{r_{1}}{r_{2}}}\right\}$ branch cut
- $x \in(1,+\infty): \theta_{1,2}$ are continuous \Rightarrow no cut

6) (15pts) Can the function $f(z)=e^{i \theta(z)}$ be analytic anywhere in domain D if $\theta(z)$ is a real non-constant function in D ? Use any method or theorem you like to answer this question.

Can't be analytic anywhere (apart from any open subset of D where $\theta(z)=$ const). Two ways to prove this:

1. Method 1: Cauchy-Riemann equations $\frac{\partial f}{\partial x} \stackrel{?}{=}-i \frac{\partial f}{\partial y} \Rightarrow\left\{\begin{array}{c}\frac{\partial f}{\partial x}=i e^{i \theta} \frac{\partial \theta}{\partial x} \\ -i \frac{\partial f}{\partial y}=-i \cdot i e^{i \theta} \frac{\partial \theta}{\partial y}=e^{i \theta} \frac{\partial \theta}{\partial y}\end{array}\right\} \Rightarrow \underbrace{\underbrace{}_{\text {Real }}}_{\text {Imaginary }^{i \frac{\partial \theta}{\partial x}} \stackrel{?}{=} \frac{\partial \theta}{\partial y}}$

This equality obviously can't be satisfied unless both derivatives are zero, which corresponds to constant θ.
2. Method 2: Max Modulus Principle, but with an extra step, since Max Modulus Principle doesn't rule out the possibility that $|f|=$ const for non-constant $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$ [no points subtracted if you didn't do this step]: $|f|^{2}=e^{i \theta(z)} e^{-i \theta(z)}=1=$ const $;|f|^{2}=u^{2}+v^{2}$. Let's prove that u and v are also constant, and thus $\theta=$ const: Maximum of u^{2} is achieved on the boundary (proven in the homework), but for non-constant u this would correspond to the minimum of v^{2}, which contradicts the Maximum / Minimum Principle for harmonic functions proven in the homework. Therefore, constant $|f|$ is only possible if both u and v are constant.

Finally, note that the Liouville Theorem is not applicable here, since it only concerns the case $D=\mathbb{C}$
7) (15 pts) Solve the boundary value problem for the Laplace's equation $\nabla^{2} \Phi=0$ in an infinite strip, with boundary conditions indicated below (Φ is a real function). Hint: consider analytic functions of form $f(z)=A e^{k z}$, where A and k are real constants. Make sure to satisfy all four boundary conditions!

Solution is obvious: pick negative $k(k=-2$ and $k=-3)$ to ensure that the solution is bounded at $x \rightarrow \infty$, and use imaginary part of the analytic function as the solution: $\Phi=\operatorname{Im}\left[A_{1} e^{-2 z}+A_{2} e^{-3 z}\right]$

Boundary condition on the left gives A_{1} and A_{2} :

$$
\begin{aligned}
& k=-2: A_{1}=-1 \\
& k=-3: A_{1}=+3
\end{aligned} \Rightarrow \Phi(x, y)=\operatorname{Im}\left[-e^{-2 z}+3 e^{-3 z}\right]=-e^{-2 x} \sin (-2 y)+3 e^{-3 x} \sin (-3 y)=e^{-2 x} \sin (2 y)-3 e^{-3 x} \sin (3 y)
$$

