
Math 656 • Midterm Exam • March 8, 2016 • Victor Matveev 

 

1) (15pts) Find all values of z in polar or Cartesian form, and plot them as points in the complex plane: 
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In the last step we used the fact that ln 2 3 ln 2 3  because 2 3 2 3 1
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2) (15pts) Sketch the image of the region  : 1 | | , Im 0z z e z    under the mapping  Logw i i z . You 

may consider this transform as a sequence of 3 separate, simple steps. Hint: use polar form for the original 
variable z, and note the slight complication from the fact that Log(z) is the branch with arg ( , ]z      

 

Step 1: 

z : rotation by 
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"Half-ring" in the upper half-plane  "Half-ring"  in the right half-plane
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  Log :

"Half-ring"  in the right half-plane Two rectangles (would be 1 rectangle if not for the branch cut!)
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: rotate two rectangles by :
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3) (25pts) Calculate each integral over the indicated circle, or explain why the integral equals zero: 
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   Equivalently, can obtain this by parametrizing z=Rei 

e)    
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4)  (15pts) Find the bound on 
2

cosh

2 1C

z
dz

z iz  , where the integration contour C is a straight line connecting 

points z=3i and z=3. Hint: express cosh z in terms of exponentials. 
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============================  Pick 2 problems between 5, 6, 7 ========================== 

5) (15pts) Consider any branch of function 
1/2

( )
1

z
f z

z
    

, describe its branch cut(s) and describe the jump 

discontinuity of this function across the branch cut(s). Finally, use this branch to compute ( )f i  
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6) (15pts) Can the function    i zf z e   be analytic anywhere in domain D if  (z) is a real non-constant 

function in D? Use any method or theorem you like to answer this question. 

Can’t be analytic anywhere (apart from any open subset of D where  z const  ). Two ways to prove this: 

1. Method 1: Cauchy-Riemann equations 
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This equality obviously can’t be satisfied unless both derivatives are zero, which corresponds to constant . 

2. Method 2: Max Modulus Principle, but with an extra step, since Max Modulus Principle doesn’t rule out the 

possibility that f const for non-constant Re(f) and Im(f) [no points subtracted if you didn’t do this step]: 

   2 2 2 21 ;i z i zf e e const f u v      . Let’s prove that u and v are also constant, and thus θ=const: 

Maximum of u2 is achieved on the boundary (proven in the homework), but for non-constant u this would 
correspond to the minimum of v2, which contradicts the Maximum / Minimum Principle for harmonic 

functions proven in the homework. Therefore, constant f  is only possible if both u and v are constant. 

Finally, note that the Liouville Theorem is not applicable here, since it only concerns the case D   



7) (15 pts) Solve the boundary value problem for the Laplace’s equation 2 0    in an infinite strip, with 
boundary conditions indicated below ( is a real function). Hint: consider analytic functions of form 

  k zf z Ae , where A and k are real constants. Make sure to satisfy all four boundary conditions! 
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Solution is obvious: pick negative  ( 2 and 3) to ensure that the solution is bounded at ,

and use imaginary part of the analytic function as the solutio =Imn:
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Φ(x, 0)=0 

Φ(x, π)=0 

Φ(0, y) = sin 2y – 3 sin 3y 
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